Plugin Tutorial

What are plugins: Plugins extend bzfs (bzflag server). You can make the server
do extra things with a plugin. For example, the " is on a rampage," etc.
messages are created by a plugin.

How to make your own plugins:

First, you need to download the BZFlag source code. Go to
http://my.bzflag.org/w/Download and download the most recent version of the
source. At the time of writing, http://downloads.sourceforge.net/bzflag/bzflag-
2.0.10.zip?download is the most recent version. Once downloaded, go look at the
source code for SAMPLE_PLUGIN.
/bzflagsource/plugins/SAMPLE_PLUGIN/SAMPLE_PLUGIN.cpp.

// SAMPLE PLUGIN.cpp : Defines the entry point for the DLL application.
//

#include "bzfsAPI.h"
#include "plugin utils.h"

BZ_GET_ PLUGIN_VERSION

BZF_PLUGIN CALL int bz Load (const char* /*commandLine*/)
{

bz _debugMessage(4,"SAMPLE_PLUGIN plugin loaded");

return 0;

}

BZF PLUGIN CALL int bz Unload (void)

{
bz_debugMessage(4,"SAMPLE_ PLUGIN plugin unloaded");
return 0;

}

// Local Variables: **%*

// mode:C++ ***

// tab-width: 8 *x*x*

// c-basic-offset: 2 **x*

// indent-tabs-mode: t **%*

// End: ***

// ex: shiftwidth=2 tabstop=8

This plugin doesn't actually do anything, it is just a base to start your plugins with.
#include "bzfsAPIl.h", and BZ GET _PLUGIN_VERSION are required for your plugins
to work. bz_Load and bz_Unload are called when the plugin is loaded or unloaded.
The debug messages are displayed by bzfs when in debug mode. If the first
parameter for bz_debugMessage is 4, that message will only display if you start
bzfs with -dddd, but will not be displayed if you start bzfs with -d, -dd, or -ddd.

http://my.bzflag.org/w/Download
http://downloads.sourceforge.net/bzflag/bzflag-2.0.10.zip?download
http://downloads.sourceforge.net/bzflag/bzflag-2.0.10.zip?download
http://downloads.sourceforge.net/bzflag/bzflag-2.0.10.zip?download
http://downloads.sourceforge.net/bzflag/bzflag-2.0.10.zip?download
http://downloads.sourceforge.net/bzflag/bzflag-2.0.10.zip?download
http://downloads.sourceforge.net/bzflag/bzflag-2.0.10.zip?download
http://my.bzflag.org/w/Download
http://my.bzflag.org/w/Download

Your First Plugin (maybe)

Now let's make a copy of SAMPLE_PLUGIN to work with. You can copy the entire
SAMPLE_PLUGIN folder and replace every occurrence of SAMPLE_PLUGIN with the
name of your plugin. Or, you can use the newplug.sh script in the plugin folder to
make a copy for you. Open up your terminal, and cd to the plugins folder. Now
execute "./newplug.sh my first plugin" . (You will probably need to give the script
permission to be executed first, by running "chmod +x newplug.sh"). There will
now be a folder in plugins called my first plugin. Go into that folder and open up
my first_plugin.cpp in a text editor (TextEdit, Notepad, etc.) It should look the
same as SAMPLE_PLUGIN.

Plugins work (mainly) by defining events. When a certain event happens, a
function in your plugin is called. A list of available events is located at
http://my.bzflag.org/w/Event%28AP1%29 . Let's start with the player death event.
It is called bz_ePlayerDieEvent .

Put this code in your plugin. This plugin will now send a message from the server
saying "You got killed" whenever you die, and "You killed someone" when you
make a Kkill.

#include "bzfsAPI.h"
BZ_GET PLUGIN VERSION

class my first plugin_events : public bz EventHandler
{

virtual void process (bz_EventData *eventData)

{

if (eventData->eventType==bz ePlayerDieEvent)

{
bz PlayerDieEventData* data = (bz_PlayerDieEventData*)eventData;
bz sendTextMessage(BZ SERVER,data->playerID,"You got killed!");
bz_sendTextMessage(BZ_SERVER,data->killerID, "You killed someone!");

}

}
}i

my first plugin events my first plugin events;

BZF_PLUGIN_CALL int bz Load (const char* /*commandLine*/)

{
bz_debugMessage(4,"my_first plugin plugin loaded");
bz _registerEvent(bz_ePlayerDieEvent,&my first plugin events);
return 0;

}

BZF PLUGIN CALL int bz Unload (void)

{
bz_debugMessage(4,"my_first plugin plugin unloaded");
bz removeEvent (bz ePlayerDieEvent,&my first plugin events);
return 0;

}

http://my.bzflag.org/w/Event(API)
http://my.bzflag.org/w/Event(API)
http://my.bzflag.org/w/Event(API)

First we define a class, my_first plugin_events. This class will handle the player
death event. This class inherits from the bz_EventHandler class. We override the
process function with our own. This function processes the events (only the player
death event, currently). Then we check the event data sent to the function to see
what kind of event it is. If it is the bz_ePlayerDieEvent, then we execute the code
for that event.

if (eventData->eventType==bz_ePlayerDieEvent)

{
bz_PlayerDieEventData* data = (bz_PlayerDieEventData*)eventData;
bz_sendTextMessage(BZ_SERVER,data->playerID, "You got killed!");
bz sendTextMessage(BZ SERVER,data->killerID,"You killed someone!");

}

Inside the event code, we cast the eventData into the type
bz_PlayerDieEventData so we can use the data. To see all the data included in the
player death event data, go here: http://my.bzflag.org/w/Bz_ePlayerDieEvent , or
you can look in the bzfsAPI.h header file (/bzflagsource/include/bzfsAPI.h). Now we
use the bz_sendTextMessage() function. This function sends a chat message.
There is a list of available functions at http://my.bzflag.org/w/Functions%28API%?29

. You can find more info about bz_sendTextMessage() at
http://my.bzflag.org/w/Bz_sendTextMessage .
We will be using this version of the function:

BZF_API bool bz_sendTextMessage (int from, int to, const char* message);

You can use the BZ SERVER constant for the server. So, we are sending a
message from the server, to the player that got killed (the playerID variable in the
event data), and we are sending the message "You got killed."

bz_sendTextMessage(BZ_SERVER,data->playerID, "You got killed!");

The message sent to the killer is similar, except we use killerID instead of
playeriD.

Then we create an instance of this class. This instance will be used to handle the
death event.

Next, in the load and unload functions, we register the player death event. We
pass it a reference to the instance of the my_first_plugin_events class. In the
unload function, we remove the event. So the process function of the

my _first_plugin_events class will get called every time a player dies.

Now we need to compile the plugin and test it out! Open your terminal, and cd to
the folder /bzflagsource/plugins/my_first_plugin/.

Then execute "make install" as root. (Compilation process may be different for
you).

Then run "bzfs -loadplugin /usr/local/lib/my_first_plugin.so" . (/usr/local/lib/ is the
default directory for the plugins, but it may be different for you. If you use
Windows, you will have a .dll instead.)

Open up bzflag with a few bots ("bzflag -solo 5") and join localhost:5154.
Whenever you kill or get killed, you should get sent a message by the server.

http://my.bzflag.org/w/Bz_sendTextMessage
http://my.bzflag.org/w/Bz_sendTextMessage
http://my.bzflag.org/w/Bz_sendTextMessage
http://my.bzflag.org/w/Functions(API)
http://my.bzflag.org/w/Functions(API)
http://my.bzflag.org/w/Functions(API)
http://my.bzflag.org/w/Bz_ePlayerDieEvent
http://my.bzflag.org/w/Bz_ePlayerDieEvent
http://my.bzflag.org/w/Bz_ePlayerDieEvent

Player Records

Player records let you get information about a player from their playerID. If you
wanted something like the IP address of a player from their playerlD, you'd need
to get a player record. All the information available from a player record is listed
here: http://my.bzflag.org/w/Bz_BasePlayerRecord .

You can create a player record like this:

bz PlayerRecord *playerdata;
//make a variable "playerdata" to hold a playerrecord

playerdata = bz_getPlayerByIndex(data->playerID);
//get the playerrecord data from a playerID with this function

if(playerdata)
{

/*it is important to do if(playerrecord) before using the player record. For
example, if the playerID you got a player record from doesn't exist, you will get
a segfault when trying to use the player record. Doing if(playerrecord) will
prevent this.*/

/*INSERT CODE HERE USING THE PLAYER RECORD. example: the player's callsign would
be "playerdata->callsign".*/

}

bz freePlayerRecord(playerdata);
//This gets rid of the player record when you are done with it.
//important: forgetting to free the player record will result in a memory leak

The messages that it sends you when you kill or get killed are kind of boring. Let's
make them a little more exciting using player records to display their callsigns...
(new code is blue).

class my first plugin events : public bz EventHandler

{
virtual void process (bz_EventData *eventData)
{
if (eventData->eventType==bz_ePlayerDieEvent)
{

bz PlayerDieEventData* data = (bz_PlayerDieEventData*)eventData;

bz _PlayerRecord *playerdata; //create a playerrecord for the dead player.
playerdata = bz getPlayerByIndex(data->playerID); //get data

bz PlayerRecord *killerdata; //another playerrecord for the killer
killerdata = bz getPlayerByIndex(data->killerID); //get data

if(killerdata&&playerdata)
{//make sure that both playerrecords exist before doing anything with them

std::string killermessage = std::string("You killed ") +
playerdata->callsign.c_str() +

std::string(" with ") +

killerdata->currentFlag.c_str();

//now we create a message to send to the killer

http://my.bzflag.org/w/Bz_BasePlayerRecord
http://my.bzflag.org/w/Bz_BasePlayerRecord
http://my.bzflag.org/w/Bz_BasePlayerRecord

std::string playermessage=playerdata->callsign.c_str() +
std::string(" got killed by ") +
killerdata->callsign.c_str() +

std::string(" whose email string is ") +
killerdata->email.c_str();
//...and, another message to send to the player

bz sendTextMessage(BZ_ SERVER,BZ ALLUSERS,playermessage.c_str());
bz_sendTextMessage(data->killerID,data->killerID,killermessage.c_str());
//send the messages we created

}

bz freePlayerRecord(playerdata);//we're done with the playerrecords now,
bz freePlayerRecord(killerdata);//so we free them.

}
}
Yi

We create a player record for both the player and the killer. Then we use this to
generate messages to send to each player.

std::string killermessage = std::string("You killed ") +
playerdata->callsign.c_str() +
std::string(" with ") +

killerdata->currentFlag.c_str();

First we create a string called killermessage. Then we concatenate several strings
into the full message. We put std::string("") around each string and .c_str() after
every variable to convert it into type of string we can store in killermessage.
std::string("") will convert text into a string, and .c_str() is a function in

bz ApiString (the type of the strings in the player records) into a type that can be
stored in a string. There is similar code for creating playermessage.

bz sendTextMessage(BZ_ SERVER,BZ ALLUSERS,playermessage.c_str());

Then we send the playermessage to all players. BZ ALLUSERS is a constant you
can use to send a message to all players. Also, c_str is used again to convert
playermessage into a string that can be used in the bz_sendTextMessage function.

bz _sendTextMessage(data->killerID,data->killerID,killermessage.c_str());

You can see here that the message is sent from and to the same player. When you
do this, the player will see the message as white text on their screen (with no
SERVER: or anything at the beginning).

Then the player records are freed. Also you can put a team type in the "to"
parameter, to send a team message. (like, eBlueTeam or eRogueTeam)

Now our plugin will display "You killed (callsign) with (flag)" to the killer, and
"(player) was killed by (killer) whose email string is (email)" to all players. Compile
it and try it out.

Modification Events

A modification event is one where you can modify the data. The
bz _eGetPlayerSpawnPosEvent is a modification event. It is called on spawn and
lets you change the spawn position of the player.

At the moment, the plugin really doesn't do anything useful. Let's make it a little
more useful. We will set up the plugin so that if you are killed by a tank, you will
spawn inside a box where you cannot play until after someone captures the flag.
So once you get killed, you're "out" until the next game. (note: if you're doing this
in a real map, you probably want to make something to do inside this "box" so
that players don't get bored and leave.)

First, we'll create a variable, that stores where each player will spawn.
bool spawnpos[256]={0};

Now we have an array, with one element for each player. If their variable is O,
they will spawn normally, but if their variable is 1, they will spawn in the box.
Instead of having 256 variables for each player, we could just create a new
variable for each player when they join, and remove it when they leave. But bools
are small (1 bit), so it really doesn't matter.

Then we register three more events: bz eGetPlayerSpawnPosEvent,
bz_eCaptureEvent, and bz_ePlayerPartEvent.

In bz_ePlayerDieEvent, we'll set spawnpos[playerID] to 0 or 1 depending on who
killed them (a player, or the server -- a world weapon shock wave after cap)

In bz_eGetPlayerSpawnPosEvent (called on spawn), we change their spawn
position depending on who they got killed by (spawnpos[playerID]).

In bz_eCaptureEvent (called when a flag is captured), we'll reset all the
spawnpos[]'s and fire a giant SW to kill everyone else

And, in bz_ePlayerPartEvent (called when a player leaves), we reset
spawnpos|[playerlD] so that the next player joining with that ID will not have old
data from another player.

#include "bzfsAPI.h"

BZ_GET PLUGIN VERSION

bool spawnpos[256]={0}; //0 means they spawn normally, 1 means they spawn in a box

class my first plugin_events : public bz_EventHandler

{

virtual void process (bz EventData *eventData)

{

if (eventData->eventType==bz_ePlayerDieEvent)

{

bz_PlayerDieEventData* data = (bz_PlayerDieEventData*)eventData;

if (data->killerTeam==eNoTeam) {spawnpos[data->playerID]=0;}
else{spawnpos[data->playerID]=1;}

//1If the team that killed the player is eNoTeam, then it's the server. This
//must be the shockwave fired on flag capture. Make them spawn normally.
//Otherwise, a player must have killed them. Make them spawn in the box.

else if(eventData->eventType==bz_eCaptureEvent)

{

//flag capture event. (no data needed, we won't be needing it)

for(int i=0; 1i<256; i++)

{spawnpos[i]=0;}

//if a flag gets captured, then we loop through all of spawnpos and reset
//each element.

float firepos[3]={0};

bz fireWorldWep("SW",10,BZ_ SERVER,firepos,0,0,0,0.0f);

//now we fire a SW. We set the firing position (firepos) to (0,0,0).
//Then we fire a shockwave at that position, to kill all players on cap.

else if(eventData->eventType==bz_ eGetPlayerSpawnPosEvent)

{

bz _GetPlayerSpawnPosEventData* data =

(bz_GetPlayerSpawnPosEventData*)eventData;

//Player spawn event. This is a modification event, so we can change the
//spawn position.

if (spawnpos[data->playerID])
{

data->pos[0]=0;data->pos[1]=0;data->pos[2]=50;
}
//we check what the spawnpos for that player is. If it is 1 (spawn in the
//box), then we change the spawn position to (0,0,50) which is where the box
//will be.

else if(eventData->eventType==bz_ePlayerPartEvent)

}i

bz PlayerJoinPartEventData* data = (bz_PlayerJoinPartEventData*)eventData;
spawnpos [data->playerID]=0;

//And, if a player leaves, we reset their spawnpos. That way a new player
//joining with the same playerID won't get old data from the old player.

}

my first plugin events my first plugin_events;

BZF_PLUGIN_CALL int bz Load (const char* /*commandLine*/)

{

}

bz debugMessage(4,"my first plugin plugin loaded");
bz_registerEvent(bz_ePlayerDieEvent,&my_ first plugin_events);

bz _registerEvent(bz_eCaptureEvent,&my first plugin_ events);

bz registerEvent(bz eGetPlayerSpawnPosEvent,&my first plugin events);
bz_registerEvent(bz_ePlayerPartEvent,&my_ first plugin_events);

//make sure to register all the events

return 0;

BZF PLUGIN CALL int bz Unload (void)

{

}

bz_debugMessage(4,"my_ first plugin plugin unloaded");

bz removeEvent(bz ePlayerDieEvent,&my first plugin events);
bz_removeEvent(bz_eCaptureEvent,&my first plugin_events);
bz_removeEvent(bz_eGetPlayerSpawnPosEvent,&my first plugin events);
//...and remove them on unload.
bz_removeEvent(bz_ePlayerPartEvent, &my_first plugin events);

return 0;

Now try the plugin out. It is recommended that you test it on a 2 team CTF map,
with an inescapable box at position (0,0,50), a very large _shockOutRadius, and
spawnzones on top of each team's base.

Loading Parameters

Plugins can be loaded with parameters. If you load your plugin with “-loadplugin
/usr/local/lib/my _first plugin.so,12345" , you'd be passing the parameter string
"12345" to the plugin.

BZF_PLUGIN_CALL int bz Load (const char* /*commandLine*/)

If you uncomment commandLine in this code, you will be able to access the
parameter string via commandLine.

Let's change the plugin to have a customizable features. Servers using the plugin
can specify whether or not they want shield flags given out on spawn (To give
players "2 lives"). Users will be able to load it these three ways:

-loadplugin /path/to/my_first plugin.so #No parameter. it will default to 0.
-loadplugin /path/to/my first plugin.so,0 #Players will not get a SH on spawn.
-loadplugin /path/to/my first plugin.so,1 #Players will get a SH on spawn.

Now we'll set up a bool to remember this parameter. New code is marked in blue.

BZ_GET_ PLUGIN_VERSION

bool spawnpos[256]1={0};
bool shield=0; //whether or not players get shields on spawn. Defaults to no.

Then we register a new event - bz_ePlayerSpawnEvent, which is called on spawn.
Then, in the loading function, we check the parameter string. If the first character
of the parameter string exists (If we got passed a parameter), then we assign the
value to the "shield" variable. (atoi() converts strings to numbers).

BZF_PLUGIN CALL int bz Load (const char* commandLine)

{
bz_debugMessage(4,"my_first plugin plugin loaded");
bz _registerEvent(bz_ePlayerDieEvent,&my first plugin events);
bz registerEvent(bz eCaptureEvent,&my first plugin events);
bz_registerEvent(bz_eGetPlayerSpawnPosEvent, &my_ first plugin_events);
bz _registerEvent(bz_ePlayerSpawnEvent,&my first plugin_events);
//register the spawn event.
bz_registerEvent(bz_ePlayerPartEvent,&my_first plugin_events);
if (&commandLine[0]) shield=atoi(&commandLine[0]);
//check what the parameter is — if it is a "1" then we will give SHs on spawn.
return 0;

}

BZF_PLUGIN_CALL int bz_Unload (void)
{
bz debugMessage(4,"my first plugin plugin unloaded");
bz_removeEvent (bz_ePlayerDieEvent,&my first plugin_events);
bz _removeEvent (bz_eCaptureEvent,&my first plugin events);
bz removeEvent (bz_ eGetPlayerSpawnPosEvent,&my first plugin events);
bz removeEvent (bz ePlayerSpawnEvent,&my first plugin events);
//make sure you remember to remove the event on unload — if you don't, you'll
//get a segfault on unload

bz_removeEvent(bz_ePlayerPartEvent, &my_first plugin events);
return 0;

}
Then, in that event, we give a SH to the player if(shield).

else if(eventData->eventType==bz ePlayerSpawnEvent)

{
bz PlayerSpawnEventData* data = (bz_PlayerSpawnEventData*)eventData;

if(shield)bz givePlayerFlag(data->playerID,"SH",0);
}

Now recompile and test it out. (Make sure the map you are testing on has some
shield flags, preferably in an inaccessible location). Try loading it each of these
ways and make sure it works as expected.

-loadplugin /path/to/my first plugin.so #No parameter. it will default to 0.
-loadplugin /path/to/my first plugin.so,0 #Players will not get a SH on spawn.
-loadplugin /path/to/my_first plugin.so,1 #Players will get a SH on spawn.

Slash Commands

The loading parameter is useful, but what if we want the users of this plugin to be
able to toggle shields on spawn ingame? Or what if the server owner wants to
restart the game? (kill everyone with a SW). To do this you need to register
custom slash commands. Let's register /shield and /restartspawn.

First we have to set up a class to handle our custom slash commands. The code is
explained in the comments.

class my first plugin_slashcommands : public bz CustomSlashCommandHandler
{//create the class, have it inherit from bz CustomSlashCommandHandler
public:

virtual bool handle (int playerID, bzApiString command, bzApiString
/*message*/, bzAPIStringList *params)

{//the handle function — gets called when someone runs a custom slash command.

bz PlayerRecord *playerdata;
playerdata = bz_getPlayerByIndex(playerID);
if (!playerdatal | !playerdata->admin) {bz_freePlayerRecord(playerdata); return

051}
bz freePlayerRecord(playerdata);
//create a player record to make sure they are an admin before letting them
//run this command.
if (command=="shield")
{//if they did the /shield command
if (params->get (0)=="off" || params->get(0)=="0")
{shield=0;}//if the parameter (/shield off or /shield 0) is "off", turn
//shield off.
else if(params->get(0)=="on" || params->get(0)=="1")
{shield=1;}//same, except it turns shield on instead of off.
else { bz sendTextMessage(BZ SERVER,playerID, "Usage: /shield <on|off>"); }
return 1;//if they did not pass the right parameters, send a message telling
//how to use it. Then return. (return 1 means successful, return 0
//will show up as "unknown command".)
}
else if(command=="restartspawn")
{// "restartspawn" is basically the same as a flag capture — resets all spawn
//positions and fires a SW. See the capture event code for more details
for(int i=0; 1i<256; i++)
{
spawnpos|[i]=0;
}
float firepos[3]={0};
bz_fireWorldWep("SW",10,BZ_SERVER,firepos,0,0,0,0.0f);
return 1;
}
}
}i

my first plugin_slashcommands my_ first plugin_slashcommands;
//then create an instance of this class to handle the custom slash commands.

Now we need to actually register the commands. Put

bz registerCustomSlashCommand("shield",&my first plugin slashcommands);
bz_registerCustomSlashCommand("restartspawn",&my first plugin_slashcommands);

In the load event, and

bz _removeCustomSlashCommand("shield");
bz removeCustomSlashCommand("restartspawn");

in the unload event.

Compile the plugin and try it out. Start bzfs with -passwd 1 and then you can type
/password 1 ingame to become an admin. Try out both commands, when you are
admin and when you are not. Try each parameter for the /shield command and
make sure that everything works as expected.

Custom Map Objects

What if the user wants the "out" tanks to spawn somewhere other than (0,0,50),
or spawn in different positions for different teams? You could set these up as
loading parameters, but there is a better way — custom map objects. They are
objects that go in the map file (like a box or pyramid), but they are handled by
your plugin.

We'll register the "outspawn" object. Then users of the plugin will be able to put
something like:

outspawn
position 0 0 50
size 10 10 0
team 1

end

in their map, and then all red tanks that are out will spawn within that zone.

Like event handlers and custom slash command handlers, we will need to create a
class to handle the custom map object.

class my first plugin mapobjects : public bz CustomMapObjectHandler
{
//Create a class to handle the custom map object(s).
public:
virtual bool handle (bzApiString object, bz CustomMapObjectInfo *data)
{
//The "handle" function of this object is called whenever
//the server encounters a custom map object while reading the map.
//So right when the server starts, this function will be called for each
//custom map object. We will put code here that stores the outspawn object
//data in variables, so we can use it later.

Yi

my first plugin mapobjects my_ first plugin mapobjects;
//Then we create an instance of it to handle the outspawn objects.

L1177 777777 7077777 77

//load event
bz registerCustomMapObject("outspawn",&my first plugin mapobjects);
//...and, register it in the plugin load event.

//unload event
bz_registerCustomMapObject("outspawn");
//...then unload in the unload event.

And we have a class all set up to handle the "outspawn" object. But, now, we
need to write the actual code to handle it. First let's make an array to store the
data from the outspawn object(s). (New code is marked in blue)

BZ_GET_ PLUGIN_VERSION

bool spawnpos[256]1={0};
bool shield=0;

float outspawns[5][5]1={0};
//Now we have an array "outspawns." outspawns[l] refers to the outspawn zone for

//the red team,

//The

//outspawn zone. We will leave out a random Z spawn position for simplicity.

outspawns[3] refers to the outspawn zone for the blue team,

etc.

6 element array inside stores the xmin, xmax, ymin, ymax, and z for the

//will always spawn at the same Z position.

(they

Now there's an array to store the outspawn object data. We need to write code
that parses the outspawn code and stores it in the array.

virtual bool handle (bzApiString object, bz CustomMapObjectInfo *data)

{

if (object!="OUTSPAWN")return 0;
//if the custom object is not "outspawn", it fails (returns 0).

float x=0,y=0,2z=0,xsize=0,ysize=0;
int team=1;
//init some temporary variables to hold the outspawn data.

for (unsigned int i = 0; i < data->data.size(); i++)

{

//This function gets passed a list of strings. Each string is one line
//from the outspawn object. We'll loop through the lines and parse

//each one.

std::string line = data->data.get(i).c_str();
//get the current line and store it in a string.

bzAPIStringList *nubs = bz _newStringList();
nubs->tokenize(line.c_str()," ",0,true);

//now we split up the line at each space and store it in a list of

//strings named "nubs".

if (nubs->size() > 0)

{
std::string key = bz toupper(nubs->get(0).c str());

//now we make the first string (the key, like position or size)
//all uppercase (case-insensitive) and store it in a string

//named "key".

if (key == "POSITION" && nubs->size() > 3)

{
x = (float)atof(nubs->get(1l).c_str());
y = (float)atof(nubs->get(2).c_str());
z = (float)atof(nubs->get(3).c _str());
//if the key is position, get the x y and z values.

}

else if (key == "SIZE" && nubs->size() > 3)

{
xsize = (float)atof(nubs->get(1l).c_str());
ysize (float)atof(nubs->get(2).c_str())

.
14

//same thing for size, except we don't keep the Z value.

}
else if (key == "TEAM" && nubs->size() > 1)
{
//and then we get the team color.
team=(int)atoi(nubs->get(1l).c_str());
}

}

bz_deleteStringList(nubs);

//Make sure to delete the list when you're done with it.
}
outspawns[team][0]=x-xsize; //convert x and xsize into xmin
outspawns[team][1l]=x+xsize; //convert x and xsize into xmax
outspawns[team][2]=y-ysize; //same.
outspawns[team][3]=y+ysize;
outspawns[team][4]=z;//we'll always spawn at the same z position.
//Now we convert x/y/xsize/ysize into xmin, xmax etc variables. Then we
//store it in the correct array element. Then [0] [1]
//[2] [3] and [4] refer to xmin xmax ymin ymax and z.

return 1;//Return 1 (successful)

Now our plugin reads the outspawn objects and stores them in an array. But the
plugin doesn't actually use the data yet... So we'll update the spawn event to use
the outspawn zones. (New code is marked in blue)

else if(eventData->eventType==bz_eGetPlayerSpawnPosEvent)
{
bz _GetPlayerSpawnPosEventData* data =
(bz_GetPlayerSpawnPosEventData*)eventData;
if (spawnpos[data->playerID])

{
int teamnumber=1; //init a variable to figure out what team they are on.
switch(data->team)
{
case eRogueTeam: teamnumber=0; break;
case eRedTeam: teamnumber=1; break;
case eGreenTeam: teamnumber=2; break;
case eBlueTeam: teamnumber=3; break;
case ePurpleTeam: teamnumber=4; break;
default: break;
//check the data, and assign an int value to teamnumber depending
//on their team color.
}
data->pos[0]=(int) ((rand()%((int) (outspawns[teamnumber][1l]-
outspawns[teamnumber][0])))+outspawns[teamnumber][0]);
data->pos[l]=(int) ((rand()%((int) (outspawns|[teamnumber][3]-
outspawns|[teamnumber][2])))+outspawns[teamnumber][2]);
//now we choose random x and y positions depending on the x/y min/max
values. This is explained in more detail later.
data->pos[2]=outspawns|[teamnumber][4];//put them at the correct Z position
}

}

Now, when a tank is "out," it will spawn inside the outspawn zone specified in the

map file.

This code is a little confusing. It picks a random number between two numbers.

data->pos[0]=(int) ((rand()%((int) (outspawns[teamnumber][1]-
outspawns[teamnumber][0])))+outspawns[teamnumber][0]);

Expanding this code, it looks like this.

data->pos[0] =
(int)
(

(

rand() %

(
(int)

(

outspawns|[teamnumber][1] — outspawns[teamnumber][0]

)
)
)

+ outspawns[teamnumber][0]

)i

(Not all the parenthesis and (int)s are required, it just makes it simpler to
understand).

The rand() function returns a random number (between 0 and a very large
number). You can use the % operator (modulo) to set the range - for example, the
number rand() % x is between 0 and x. Now we need the number to be between
xmin and xmax. (outspawns[teamnumber][0] and outspawns[teamnumber][1]).
So first we get a random number that is between 0 and the difference between
xmin and xmax (rand() % xmax-min). The (int) is required because the % operator
only works with ints. Since we now have a random number between 0 and the
difference, we can add xmin and get a value between xmin and xmax. Similar
code is used to get a random Y position.

Now compile the plugin and try it out again. You will need a map file to test it out
this time. Here is a simple map file you could test it with:

options

-loadplugin /usr/local/lib/my first plugin.so -ms 10 -c¢c -mp 0,10,10,0,0,15 -set
_shockOutRadius 700 +f SH{20}

end

base

position 390 390 0
size 10 10 0

color 1

end

base
position -390 -390 0

size 10 10 O
color 2
end

outspawn
position 0 0 50
size 10 10 0
team 1

end

outspawn

position 300 300 100
size 50 50 0

team 2

end

Now when a red tank is out, they will spawn around (0,0,50). When a green tank is
out, they'll spawn somewhere around (300,300,100). (In a real map, you'd need to
put some inescapable boxes at those positions - right now, you just spawn in the
air when you're out.)

Entire Plugin Source

// my first plugin.cpp : Defines the entry point for the DLL application.
//

#include "bzfsAPI.h"
BZ_GET_PLUGIN_VERSION

bool spawnpos[256]={0};
bool shield=0;
float outspawns[5][5]1={{0}};

class my first plugin_events : public bz EventHandler

{

virtual void process (bz_EventData *eventData)

{

if (eventData->eventType==bz ePlayerDieEvent)

{
bz PlayerDieEventData* data = (bz_PlayerDieEventData*)eventData;

if (data->killerTeam==eNoTeam) {spawnpos[data->playerID]=0;}

else{spawnpos[data->playerID]=1;}
}

else if(eventData->eventType==bz eCaptureEvent)

{
for(int i=0; 1i<256; i++)
{
spawnpos[i]=0;
}

float firepos[3]={0};
bz_fireWorldWep("SW",10,BZ_SERVER,firepos,0,0,0,0.0f);

else if(eventData->eventType==bz_ eGetPlayerSpawnPosEvent)
{
bz _GetPlayerSpawnPosEventData* data =
(bz_GetPlayerSpawnPosEventData*)eventData;
if (spawnpos[data->playerID])
{
int teamnumber=1;
switch(data->team)

{
case eRogueTeam: teamnumber=0; break;
case eRedTeam: teamnumber=1; break;
case eGreenTeam: teamnumber=2; break;
case eBlueTeam: teamnumber=3; break;
case ePurpleTeam: teamnumber=4; break;
default: break;

}

data->pos[0]=(int) ((rand()%((int) (outspawns|[teamnumber][1l]-
outspawns|[teamnumber][0])))+outspawns[teamnumber][0]);

data->pos[1l]=(int) ((rand()%((int) (outspawns[teamnumber][3]-
outspawns|[teamnumber][2])))+outspawns[teamnumber][2]);
data->pos[2]=outspawns|[teamnumber][4];

}

else if(eventData->eventType==bz_ePlayerPartEvent)

{
bz_PlayerJoinPartEventData* data = (bz_PlayerJoinPartEventData*)eventData;
spawnpos[data->playerID]=0;

}

else if(eventData->eventType==bz_ ePlayerSpawnEvent)

{
bz PlayerSpawnEventData* data = (bz_PlayerSpawnEventData*)eventData;
if(shield)bz_givePlayerFlag(data->playerID,"SH",0);

my first plugin events my first plugin events;

class my first plugin_slashcommands : public bz CustomSlashCommandHandler
{
public:

virtual bool handle (int playerID, bzApiString command, bzApiString
/*message*/, bzAPIStringList *params)

{
bz PlayerRecord *playerdata;
playerdata = bz_getPlayerByIndex(playerID);
if(!playerdata| !playerdata->admin) {bz_freePlayerRecord(playerdata); return
0;}

bz freePlayerRecord(playerdata);

if (command=="shield")

{
if (params->get(0)=="off" || params->get(0)=="0")
{shield=0;}
else if(params->get(0)=="on" || params->get(0)=="1")
{shield=1;}
else { bz sendTextMessage(BZ SERVER,playerID,"Usage: /shield <on|off>"); }
return 1;
}
else if(command=="restartspawn")
{
for(int i=0; 1i<256; i++)
{
spawnpos|[i]=0;
}

float firepos[3]={0};
bz_fireWorldWep("SW",10,BZ_SERVER,firepos,0,0,0,0.0f);
return 1;

}

return 0;

}
Yi

my first plugin_slashcommands my_ first plugin_slashcommands;

class my first plugin mapobjects : public bz CustomMapObjectHandler

{
public:
virtual bool handle (bzApiString object, bz CustomMapObjectInfo *data)
{
if (object!="OUTSPAWN")return 0;
float x=0,y=0,2z=0,xsize=0,ysize=0;
int team=1;
for (unsigned int i = 0; i < data->data.size(); i++)
{
std::string line = data->data.get(i).c_str();
bzAPIStringList *nubs = bz newStringList();
nubs->tokenize(line.c_str()," ",0,true);
if (nubs->size() > 0)
{
std::string key = bz toupper(nubs->get(0).c_str());
if (key == "POSITION" && nubs->size() > 3)
{
x = (float)atof(nubs->get(l).c_str());
y = (float)atof(nubs->get(2).c_str());
z = (float)atof(nubs->get(3).c_str());
}
else if (key == "SIZE" && nubs->size() > 3)
{
xsize = (float)atof(nubs->get(1l).c_str());
ysize = (float)atof(nubs->get(2).c str());
}
else if (key == "TEAM" && nubs->size() > 1)
{
team=(int)atoi(nubs->get(l).c_str());
}
¥
bz _deleteStringList(nubs);
}
outspawns[team][0]=x-xsize;
outspawns|[team][1l]=x+xsize;
outspawns[team][2]=y-ysize;
outspawns|[team][3]=y+ysize;
outspawns|[team][4]1=z2;
return 1;
}
}i

my first plugin mapobjects my_ first plugin mapobjects;

BZF PLUGIN CALL int bz Load (const char* commandLine)

{
bz_debugMessage(4,"my_first plugin plugin loaded");
bz registerEvent(bz ePlayerDieEvent,&my first plugin events);
bz_registerEvent(bz_eCaptureEvent,&my first plugin_events);

bz_registerEvent(bz_eGetPlayerSpawnPosEvent, &my_ first plugin_events);

bz _registerEvent(bz_ePlayerSpawnEvent,&my first plugin_events);

bz registerEvent(bz ePlayerPartEvent,&my first plugin events);
bz_registerCustomSlashCommand("shield",&my first plugin_slashcommands);

bz _registerCustomSlashCommand("restartspawn",&my first plugin slashcommands);
bz registerCustomMapObject("outspawn",&my first plugin mapobjects);

if (&commandLine[0]) shield=atoi(&commandLine[0]);

return 0;

}

BZF_PLUGIN_CALL int bZ_Unload (void)

{
bz_debugMessage(4,"my_first plugin plugin unloaded");
bz _removeEvent(bz_ePlayerDieEvent,&my first plugin_events);
bz removeEvent(bz_ eCaptureEvent,&my first plugin events);
bz_removeEvent (bz_eGetPlayerSpawnPosEvent, &my first plugin_events);
bz_removeEvent (bz_ePlayerSpawnEvent, &my first plugin events);
bz removeEvent(bz ePlayerPartEvent,&my first plugin events);
bz_removeCustomSlashCommand("shield");
bz_removeCustomSlashCommand("restartspawn");
bz removeCustomMapObject("outspawn");
return 0;

}

// Local Variables: ***

// mode:C++ **%*

// tab-width: 8 ***

// c-basic-offset: 2 **x*

// indent-tabs-mode: t ***

// End: ***

// ex: shiftwidth=2 tabstop=8

Suggested improvements

These are a few ideas on how to improve the plugin. Try and code them in
yourself. =)

Add/remove variables (spawnpos) for each player instead of having tons array
elements.

Use a switch instead of else/if for the event handler, etc.

Make it so there can be more than one outspawn object per team, and players

would spawn in a random one. Right now, there can only be one, rectangular
outspawn zone.

...and anything else you can think up.

